Atacand 8 Mg 28 Tablets Astra Zeneca

Atacand 8 Mg 28 Tablets Astra Zeneca

Brand:ASTRA ZENECA Pharmaceuticals
Product Code:109
Availability:In Stock

FULL PRESCRIBING INFORMATION: CONTENTS*

WARNING: FETAL TOXICITY

1 INDICATIONS AND USAGE

1.1 Hypertension

1.2 Heart Failure

2 DOSAGE AND ADMINISTRATION

2.1 Adult Hypertension

2.2 Pediatric Hypertension 1 to < 17 Years of age

2.3 Adult Heart Failure

3 DOSAGE FORMS and STRENGTHS

4 CONTRAINDICATIONS

5 WARNINGS AND PRECAUTIONS

5.1 Fetal Toxicity

5.2 Morbidity in Infants

5.3 Hypotension

5.4 Impaired Renal Function

5.5 Hyperkalemia

6 ADVERSE REACTIONS

6.1 Clinical Studies Experience

6.2 Postmarketing Experience

7 DRUG INTERACTIONS

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

8.2 Labor and Delivery

8.3 Nursing Mothers

8.4 Pediatric Use

10 OVERDOSAGE

11 DESCRIPTION

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

12.2 Pharmacodynamics

12.3 Pharmacokinetics

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

14 CLINICAL STUDIES

14.1 Hypertension

14.2 Heart Failure

16 HOW SUPPLIED/STORAGE AND HANDLING

17 PATIENT COUNSELING INFORMATION

17.1 Pregnancy

*Sections or subsections omitted from the full prescribing information are not listed.

FULL PRESCRIBING INFORMATION

WARNING: FETAL TOXICITY

•When pregnancy is detected, discontinue ATACAND as soon as possible. (5.1)

•Drugs that act directly on the renin-angiotensin system can cause injury and death to the developing fetus. (5.1)

1 INDICATIONS AND USAGE

1.1 Hypertension

ATACAND is indicated for the treatment of hypertension in adults and children 1 to < 17 years of age. It may be used alone or in combination with other antihypertensive agents.

1.2 Heart Failure

ATACAND is indicated for the treatment of heart failure (NYHA class II-IV) in adults with left ventricular systolic dysfunction (ejection fraction ≤ 40%) to reduce cardiovascular death and to reduce heart failure hospitalizations [see CLINICAL STUDIES (14.2)]. ATACAND also has an added effect on these outcomes when used with an ACE inhibitor.

2 DOSAGE AND ADMINISTRATION

2.1 Adult Hypertension

Dosage must be individualized. Blood pressure response is dose related over the range of 2 to 32 mg. The usual recommended starting dose of ATACAND is 16 mg once daily when it is used as monotherapy in patients who are not volume depleted. ATACAND can be administered once or twice daily with total daily doses ranging from 8 mg to 32 mg. Larger doses do not appear to have a greater effect, and there is relatively little experience with such doses. Most of the antihypertensive effect is present within 2 weeks, and maximal blood pressure reduction is generally obtained within 4 to 6 weeks of treatment with ATACAND.

Use in Hepatic Impairment: Initiate with 8 mg ATACAND in patients with moderate hepatic insufficiency. Dosing recommendations cannot be provided for patients with severe hepatic insufficiency [see CLINICAL PHARMACOLOGY (12.3)].

ATACAND may be administered with or without food.

If blood pressure is not controlled by ATACAND alone, a diuretic may be added. ATACAND may be administered with other antihypertensive agents.

2.2 Pediatric Hypertension 1 to < 17 Years of age

ATACAND may be administered once daily or divided into two equal doses. Adjust the dosage according to blood pressure response. For patients with possible depletion of intravascular volume (e.g., patients treated with diuretics, particularly those with impaired renal function), initiate ATACAND under close medical supervision and consider administration of a lower dose[see WARNINGS AND PRECAUTIONS (5.3)].

Children 1 to < 6 years of age:

The dose range is 0.05 to 0.4 mg/kg per day. The recommended starting dose is 0.20 mg/kg (oral suspension).

Children 6 to < 17 years of age:

For those less than 50 kg, the dose range is 2 to 16 mg per day. The recommended starting dose is 4 to 8 mg.

For those greater than 50 kg, the dose range is 4 to 32 mg per day. The recommended starting dose is 8 to 16 mg.

Doses above 0.4 mg/kg (1 to < 6 year olds) or 32 mg (6 to < 17 year olds) have not been studied in pediatric patients [see CLINICAL STUDIES (14.1)].

An antihypertensive effect is usually present within 2 weeks, with full effect generally obtained within 4 weeks of treatment with ATACAND.

Children < 1 year of age must not receive ATACAND for hypertension.

All pediatric patients with a glomerular filtration rate less than 30 ml/min/1.73m2 should not receive ATACAND since ATACAND has not been studied in this population [seeSPECIAL POPULATIONS (8)].

For children who cannot swallow tablets, an oral suspension may be substituted as described below:

Preparation of Oral Suspension:

ATACAND oral suspension can be prepared in concentrations within the range of 0.1 to 2.0 mg/mL. Typically, a concentration of 1 mg/mL will be suitable for the prescribed dose. Any strength of ATACAND tablets can be used in the preparation of the suspension.

Follow the steps below for preparation of the suspension. The number of tablets and volume of vehicle specified below will yield 160 mL of a 1 mg/mL suspension.

•Prepare the vehicle by adding equal volumes of 1Ora-Plus® (80 mL) and 1Ora-Sweet SF® (80 mL) or, alternatively, use, 1,2Ora-Blend SF® (160 mL).

•Add a small amount of vehicle to the required number of ATACAND tablets (five 32 mg tablets) and grind into a smooth paste using a mortar and pestle.

•Add the paste to a preparation vessel of suitable size.

•Rinse the mortar and pestle clean using the vehicle and add this to the vessel. Repeat, if necessary.

•Prepare the final volume by adding the remaining vehicle.

•Mix thoroughly.

•Dispense into suitably sized amber PET bottles.

•Label with an expiry date of 100 days and include the following instructions:

Store at room temperature (below 30°C/86°F). Use within 30 days after first opening. Do not use after the expiry date stated on the bottle.

Do not freeze.

Shake well before each use.

1 Ora-Plus®, Ora-Sweet SF®, and Ora-Blend SF® are registered trademarks of Paddock Laboratories, Inc.2 Supplied as a 50/50% pre-mix of Ora-Plus® and Ora-Sweet®

2.3 Adult Heart Failure

The recommended initial dose for treating heart failure is 4 mg once daily. The target dose is 32 mg once daily, which is achieved by doubling the dose at approximately 2-week intervals, as tolerated by the patient.

3 DOSAGE FORMS and STRENGTHS

4 mg are white to off-white, circular/biconvex-shaped, non-film-coated scored tablets, coded ACF on one side and 004 on the other.

8 mg are light pink, circular/biconvex-shaped, non-film-coated scored tablets, coded ACG on one side and 008 on the other.

16 mg are pink, circular/biconvex-shaped, non-film-coated scored tablets, coded ACH on one side and 016 on the other.

32 mg are pink, circular/biconvex-shaped, non-film-coated scored tablets, coded ACL on one side and 032 on the other.

4 CONTRAINDICATIONS

ATACAND is contraindicated in patients who are hypersensitive to candesartan.

Do not co-administer aliskiren with ATACAND in patients with diabetes [see DRUG INTERACTIONS (7)].

5 WARNINGS AND PRECAUTIONS

5.1 Fetal Toxicity

Pregnancy Category D

Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure and death. When pregnancy is detected, discontinue ATACAND as soon as possible [see USE IN SPECIFIC POPULATIONS (8.1)].

Oral doses ≥10 mg of candesartan cilexetil/kg/day administered to pregnant rats during late gestation and continued through lactation were associated with reduced survival and an increased incidence of hydronephrosis in the offspring. The 10-mg/kg/day dose in rats is approximately 2.8 times the maximum recommended daily human dose (MRHD) of 32 mg on a mg/m2 basis (comparison assumes human body weight of 50 kg). Candesartan cilexetil given to pregnant rabbits at an oral dose of 3 mg/kg/day (approximately 1.7 times the MRHD on a mg/m2 basis) caused maternal toxicity (decreased body weight and death) but, in surviving dams, had no adverse effects on fetal survival, fetal weight, or external, visceral, or skeletal development. No maternal toxicity or adverse effects on fetal development were observed when oral doses up to 1000 mg of candesartan cilexetil/kg/day (approximately 138 times the MRHD on a mg/m2 basis) were administered to pregnant mice.

5.2 Morbidity in Infants

Children < 1 year of age must not receive ATACAND for hypertension. Drugs that act directly on the renin-angiotensin system (RAS) can have effects on the development of immature kidneys.

5.3 Hypotension

ATACAND can cause symptomatic hypotension. Symptomatic hypotension is most likely to occur in patients who have been volume and/or salt depleted as a result of prolonged diuretic therapy, dietary salt restriction, dialysis, diarrhea, or vomiting. Patients with symptomatic hypotension may require temporarily reducing the dose of ATACAND, diuretic or both, and volume repletion. Volume and/or salt depletion should be corrected before initiating therapy with ATACAND.

In the CHARM program (heart failure patients), hypotension was reported in 18.8% of patients on ATACAND versus 9.8% of patients on placebo. The incidence of hypotension leading to drug discontinuation in ATACAND-treated patients was 4.1% compared with 2.0% in placebo-treated patients. In the CHARM-Added program, where candesartan or placebo was given in addition to ACE inhibitors, hypotension was reported in 22.6% of patients treated with ATACAND versus 13.8% treated with placebo [see DRUG INTERACTIONS (7)].

Monitoring of blood pressure is recommended during dose escalation and periodically thereafter.

Major Surgery/Anesthesia

Hypotension may occur during major surgery and anesthesia in patients treated with angiotensin II receptor antagonists, including ATACAND, due to blockade of the renin-angiotensin system. Very rarely, hypotension may be severe such that it may warrant the use of intravenous fluids and/or vasopressors.

5.4 Impaired Renal Function

Monitor renal function periodically in patients treated with ATACAND. Changes in renal function including acute renal failure can be caused by drugs that inhibit the renin-angiotensin system. Patients whose renal function may depend, in part, on the activity of the renin-angiotensin system (e.g., patient with renal artery stenosis, chronic kidney disease, severe heart failure, or volume depletion) may be at particular risk of developing oliguria, progressive azotemia or acute renal failure when treated with ATACAND. Consider withholding or discontinuing therapy in patients who develop a clinically significant decrease in renal function on ATACAND.

In the CHARM program (heart failure patients), the incidence of abnormal renal function (e.g., creatinine increase) was 12.5% in patients treated with ATACAND versus 6.3% in patients treated with placebo. The incidence of abnormal renal function (e.g., creatinine increase) leading to drug discontinuation in ATACAND-treated patients was 6.3% compared with 2.9% in placebo-treated patients. In the CHARM-Added program, where candesartan or placebo was given in addition to ACE inhibitors, the incidence of abnormal renal function (e.g., creatinine increase) was 15% in patients treated with ATACAND versus 9% in patients treated with placebo [see DRUG INTERACTIONS (7)].

5.5 Hyperkalemia

Drugs that inhibit the renin-angiotensin system can cause hyperkalemia. Monitor serum potassium periodically.

In the CHARM program (heart failure patients), the incidence of hyperkalemia was 6.3% in patients treated with ATACAND versus 2.1% in patients treated with placebo. The incidence of hyperkalemia leading to drug discontinuation in ATACAND-treated patients was 2.4% compared with 0.6% in placebo-treated patients. In the CHARM-Added program where candesartan or placebo was given in addition to ACE inhibitors, the incidence of hyperkalemia was 9.5% in patients treated with ATACAND versus 3.5% in patients treated with placebo [see DRUG INTERACTIONS (7)].

6 ADVERSE REACTIONS

6.1 Clinical Studies Experience

Because clinical studies are conducted under widely varying conditions, adverse reaction rates observed in the clinical studies of a drug cannot be directly compared to rates in the clinical studies of another drug and may not reflect the rates observed in practice.

Adult Hypertension

ATACAND has been evaluated for safety in more than 3600 patients/subjects, including more than 3200 patients treated for hypertension. About 600 of these patients were studied for at least 6 months and about 200 for at least 1 year. In general, treatment with ATACAND was well tolerated. The overall incidence of adverse events reported with ATACAND was similar to placebo.

The rate of withdrawals due to adverse events in all trials in patients (7510 total) was 3.3% (ie, 108 of 3260) of patients treated with ATACAND as monotherapy and 3.5% (ie, 39 of 1106) of patients treated with placebo. In placebo-controlled trials, discontinuation of therapy due to clinical adverse events occurred in 2.4% (ie, 57 of 2350) of patients treated with ATACAND and 3.4% (ie, 35 of 1027) of patients treated with placebo.

The most common reasons for discontinuation of therapy with ATACAND were headache (0.6%) and dizziness (0.3%).

The adverse events that occurred in placebo-controlled clinical trials in at least 1% of patients treated with ATACAND and at a higher incidence in candesartan cilexetil (n = 2350) than placebo (n = 1027) patients included back pain (3% vs. 2%), dizziness (4% vs. 3%), upper respiratory tract infection (6% vs. 4%), pharyngitis (2% vs. 1%), and rhinitis (2% vs. 1%).

Pediatric Hypertension

Among children in clinical studies, 1 in 93 children age 1 to < 6 and 3 in 240 age 6 to < 17 experienced worsening renal disease. The association between candesartan and exacerbation of the underlying condition could not be excluded.

Heart Failure

The adverse event profile of ATACAND in adult heart failure patients was consistent with the pharmacology of the drug and the health status of the patients. In the CHARM program, comparing ATACAND in total daily doses up to 32 mg once daily (n=3803) with placebo (n=3796), 21.0% of patients discontinued ATACAND for adverse events vs. 16.1% of placebo patients.

6.2 Postmarketing Experience

The following adverse reactions were identified during post-approval use of ATACAND. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

The following have been very rarely reported in post-marketing experience:

Digestive: Abnormal hepatic function and hepatitis.

Hematologic: Neutropenia, leukopenia, and agranulocytosis.

Immunologic: Angioedema

Metabolic and Nutritional Disorders: Hyperkalemia, hyponatremia.

Respiratory system disorders: Cough

Skin and Appendages Disorders: Pruritus, rash and urticaria.

Rare reports of rhabdomyolysis have been reported in patients receiving angiotensin II receptor blockers.

7 DRUG INTERACTIONS

Because candesartan is not significantly metabolized by the cytochrome P450 system and at therapeutic concentrations has no effects on P450 enzymes, interactions with drugs that inhibit or are metabolized by those enzymes would not be expected.

Non-Steroidal Anti-Inflammatory Agents including Selective Cyclooxygenase-2 Inhibitors (COX-2 Inhibitors). In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function, co-administration of NSAIDs, including selective COX-2 inhibitors, with angiotensin II receptor antagonists, including candesartan, may result in deterioration of renal function, including possible acute renal failure. These effects are usually reversible. Monitor renal function periodically in patients receiving candesartan and NSAID therapy.

The antihypertensive effect of angiotensin II receptor antagonists, including candesartan may be attenuated by NSAIDs including selective COX-2 inhibitors.

Lithium

Reversible increases in serum lithium concentrations and toxicity have been reported during concomitant administration of lithium with ACE inhibitors, and with some angiotensin II receptor antagonists. An increase in serum lithium concentration has been reported during concomitant administration of lithium with ATACAND. Monitor serum lithium levels.

Dual Blockade of the Renin-Angiotensin System (RAS)

Dual blockade of the RAS with angiotensin receptor blockers, ACE inhibitors, or aliskiren is associated with increased risks of hypotension, hyperkalemia, and changes in renal function (including acute renal failure) compared to monotherapy. Closely monitor blood pressure, renal function and electrolytes in patients on ATACAND and other agents that affect the RAS.

Do not co-administer aliskiren with ATACAND in patients with diabetes. Avoid use of aliskiren with ATACAND in patients with renal impairment (GFR <60 ml/min) [seeCONTRAINDICATIONS (4)].

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Pregnancy Category D

Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue ATACAND as soon as possible. These adverse outcomes are usually associated with use of these drugs in the second and third trimester of pregnancy. Most epidemiologic studies examining fetal abnormalities after exposure to antihypertensive use in the first trimester have not distinguished drugs affecting the renin-angiotensin system from other antihypertensive agents. Appropriate management of maternal hypertension during pregnancy is important to optimize outcomes for both mother and fetus.

In the unusual case that there is no appropriate alternative to therapy with drugs affecting the renin-angiotensin system for a particular patient, apprise the mother of the potential risk to the fetus. Perform serial ultrasound examinations to assess the intra-amniotic environment. If oligohydramnios is observed, discontinue ATACAND, unless it is considered lifesaving for the mother. Fetal testing may be appropriate, based on the week of pregnancy. Patients and physicians should be aware, however, that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Closely observe infants with histories of in utero exposure to ATACAND for hypotension, oliguria, and hyperkalemia. [see USE IN SPECIFIC POPULATIONS (8. 4)]

8.2 Labor and Delivery

The effect of ATACAND on labor and delivery in humans is unknown [see WARNINGS AND PRECAUTIONS (5.1)].

8.3 Nursing Mothers

It is not known whether candesartan is excreted in human milk, but candesartan has been shown to be present in rat milk. Because of the potential for adverse effects on the nursing infant, a decision should be made whether to discontinue nursing or discontinue ATACAND, taking into account the importance of the drug to the mother.

8.4 Pediatric Use

Neonates with a history of in utero exposure to ATACAND:

If oliguria or hypotension occurs, direct attention toward support of blood pressure and renal perfusion. Exchange transfusions or dialysis may be required as a means of reversing hypotension and/or substituting for disordered renal function.

The antihypertensive effects of ATACAND were evaluated in hypertensive children 1 to < 17 years of age in randomized, double-blind clinical studies [see CLINICAL STUDIES (14.1)]. The pharmacokinetics of ATACAND have been evaluated in pediatric patients 1 to < 17 years of age [see Pharmacokinetics (12.3)].

Children < 1 year of age must not receive ATACAND for hypertension [see WARNINGS AND PRECAUTIONS (5.2)].

10 OVERDOSAGE

No lethality was observed in acute toxicity studies in mice, rats, and dogs given single oral doses of up to 2000 mg/kg of candesartan cilexetil. In mice given single oral doses of the primary metabolite, candesartan, the minimum lethal dose was greater than 1000 mg/kg but less than 2000 mg/kg.

The most likely manifestation of overdosage with ATACAND would be hypotension, dizziness, and tachycardia; bradycardia could occur from parasympathetic (vagal) stimulation. If symptomatic hypotension should occur, supportive treatment should be instituted.

Candesartan cannot be removed by hemodialysis.

Treatment: To obtain up-to-date information about the treatment of overdose, consult your Regional Poison Control Center. Telephone numbers of certified poison control centers are listed in the Physicians’ Desk Reference (PDR). In managing overdose, consider the possibilities of multiple-drug overdoses, drug-drug interactions, and altered pharmacokinetics in your patient.

11 DESCRIPTION

ATACAND (candesartan cilexetil), a prodrug, is hydrolyzed to candesartan during absorption from the gastrointestinal tract. Candesartan is a selective AT1 subtype angiotensin II receptor antagonist.

Candesartan cilexetil, a nonpeptide, is chemically described as (±)-1-Hydroxyethyl 2-ethoxy-1-[p-(o-1H-tetrazol-5-ylphenyl)benzyl]-7-benzimidazolecarboxylate, cyclohexyl carbonate (ester).

Lithium

Increased serum lithium levels and symptoms of lithium toxicity have been reported in patients receiving ACE inhibitors during therapy with lithium.

Candesartan cilexetil is a white to off-white powder with a molecular weight of 610.67. It is practically insoluble in water and sparingly soluble in methanol. Candesartan cilexetil is a racemic mixture containing one chiral center at the cyclohexyloxycarbonyloxy ethyl ester group. Following oral administration, candesartan cilexetil undergoes hydrolysis at the ester link to form the active drug, candesartan, which is achiral.

ATACAND is available for oral use as tablets containing either 4 mg, 8 mg, 16 mg, or 32 mg of candesartan cilexetil and the following inactive ingredients: hydroxypropyl cellulose, polyethylene glycol, lactose, corn starch, carboxymethylcellulose calcium, and magnesium stearate. Ferric oxide (reddish brown) is added to the 8-mg, 16-mg, and 32-mg tablets as a colorant.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme (ACE, kininase II). Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Candesartan blocks the vasoconstrictor and aldosterone-secreting effects of angiotensin II by selectively blocking the binding of angiotensin II to the AT1 receptor in many tissues, such as vascular smooth muscle and the adrenal gland. Its action is, therefore, independent of the pathways for angiotensin II synthesis.

Write a review



Note: HTML is not translated!

Bad           Good